

HAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION: Bachelor of Science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BSAM	LEVEL: 6
COURSE CODE: PBT602S	COURSE NAME: Probability Theory 2
SESSION: JUNE 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER	Dr D. B. GEMECHU	
	Drof D. VIIMAD	
MODERATOR:	Prof R. KUMAR	

INSTRUCTIONS

- 1. There are 5 questions, answer ALL the questions by showing all the necessary steps.
- 2. Write clearly and neatly.
- 3. Number the answers clearly.
- 4. Round your answers to at least four decimal places, if applicable.

PERMISSIBLE MATERIALS

1. Nonprogrammable scientific calculators with no cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1 [12 marks]

- Define the following terms:
 - 1.1.1. Power set, $\mathcal{P}(S)$ [2]
 - 1.1.2. Sigma algebra, $\sigma(S)$ [2]
 - 1.1.3. Boolean algebra, $\mathfrak{B}(S)$ [2]
- 1.2. Consider an experiment of rolling a die with four faces once.
 - Find the power set of the sample space S for this experiment, where S represents the sample space for a random experiment of rolling a die with six faces.
 - 1.2.2. Show that the set $\sigma(X) = \{\phi, S, \{2,3\}, \{1,4\}\}\$ is a sigma algebra. [3]

Question 2 [27 marks]

2.1. Let X be a continuous random variable with p.d.f. given by

$$f_X(x) = \begin{cases} x & \text{if } 0 < x < 1\\ 2 - x & \text{if } 1 \le x < 2\\ 0 & \text{otherwise} \end{cases}$$

Then find cumulative density function of X [7]

2.2. The cumulative distribution function (c.d.f.) of a random variable X is given by

$$F_X(x) = \begin{cases} 0 & \text{for } x < 0 \\ \frac{x}{4} & \text{for } 0 \le x < 4 \\ 1 & \text{for } x > 4 \end{cases}$$

Then use the c.d.f. of X to find

2.2.1.
$$P(2 < X \le 3)$$

2.2.2.
$$P(X \ge 1.5)$$
 [1]

2.2.3. the
$$25^{th}$$
 percentile value of X . [2]

2.3. Consider the following joint p.d.f. of X and Y.

$$f(x,y) = 3(x+y)I_{(0,1)}(x+y)I_{(0,1)}(x)I_{(0,1)}(y)$$
ranginal p.d.f. of Y. [4]

Find the marginal p.d.f. of Y.

2.4. Let X and Y be a jointly distributed continuous random variable with joint p.d.f. of

$$f_{XY}(x,y) = \begin{cases} 1.2(x+y^2) & \text{for } 0 \le x \le 1 \text{and } 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$$
 2.4.1. Show that marginal pdf of X , $f_X(x) = \frac{6}{5} \left(x + \frac{1}{3}\right) I_{(0,-1)}(x)$.

2.4.1. Show that marginal pdf of
$$X$$
, $f_X(x) = \frac{6}{5} \left(x + \frac{1}{3} \right) I_{(0, 1)}(x)$. [2]

2.4.2. Find the conditional distribution of *Y* given
$$X = \frac{1}{4}$$
. [3]

2.4.3. Find
$$P(Y \ge 0.15|X = 0.25)$$
. [3]

2.4.4. Find the conditional mean Y given
$$X = \frac{1}{4}$$
. [3]

Question 3 [24 marks]

- 3.1. Let X and Y be two random variables and let a, b, c and k be any constant numbers. Then Cov(aX + c, bY + k) = abCov(X, Y).
- 3.2. Let Y_1, Y_2 , and Y_3 be three random variables with $E(Y_1) = 5$, $E(Y_2) = 12$, $E(Y_3) = 4$, $\sigma_{Y_1}^2 = 2$, $\sigma_{Y_2}^2=3,\,\sigma_{Y_3}^2=1,\,\,\sigma_{Y_1Y_2}=-0.6,\sigma_{Y_1Y_3}=\,\,0.3,\,\text{and}\,\,\sigma_{Y_2Y_3}=\,\,2.\,\,\text{If}\,\,R\,=\,\,2Y_1\,\,-\,\,3Y_2\,\,+\,\,Y_3,\,\text{then find}$
 - 3.2.1. the expected value of R. [2]
 - 3.2.2. the correlation coefficient between Y_1 and Y_3 and comment on your result. [3]
 - 3.2.3. the variance of R. [5]
- 3.3. The joint probability density function of the random variables X, Y, and Z is

$$f(x,y,z) = \begin{cases} \frac{4}{9}xyz^2, & 0 < x < 1; 0 < y < 1; 0 < z < 3, \\ 0, & elsewhere. \end{cases}$$

Find the joint marginal density function of Y and Z. Hint: find $f_{YZ}(y,z)$. [4]

3.4. If X_1, X_2 , and X_3 are **DISCRETE** random variables with joint p.m.f. $f(x_1, x_2, x_3)$, then for any constants c_1 , c_2 and c_3 , show that $E\left(\sum_{i=1}^3 c_i X_i\right) = \sum_{i=1}^3 c_i E(X_i)$. [5]

QUESTION 4 [17 marks]

- 4.1. Suppose that X is a random variable having a binomial distribution with the parameters n and p(i.e., $X \sim Bin(n, p)$).
 - 4.1.1. Show that the moment generating function of X is given by $M_X(t) = (1 p(1 e^t))^n$. **Hint**: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$. [4]
 - 4.1.2. Find the cumulant generating function of X and hence find the first cumulant. [5]
- 4.2. Let the random variables $X_k \sim Poisson(\lambda_k)$ for k = 1, ..., n be independent Poisson random variables. If we define another random variable $Y = X_1 + X_2 + \cdots + X_n$, then find the characteristics function of Y, $\phi_Y(t)$. Comment on the distribution of Y based on your result. [Hint $\phi_{X_k}(t) = e^{\lambda_k(e^{it}-1)}$ [8]

QUESTION 5 [20 marks]

5.1. Suppose that X and Y are independent, continuous random variables with densities $f_X(x)$ and $f_Y(y)$. If Z=X+Y, then show that the density function of Z is $f_Z(z)=\int_{-\infty}^{\infty}f_X(z-y)f_Y(y)dy.$

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy.$$
 [5]

- Let X and Y be independent Poisson random variables with parameters λ_1 and λ_2 . Use the convolution formula to show that X + Y is a Poisson random variable with parameter $\lambda_1 + \lambda_2$.
- 5.3. Let X_1 and X_2 have joint p.d.f. $f(x_1, x_2) = 2e^{-(x_1 + x_2)}$ for $0 < x_1 < x_2 < 1$. Let $Y_1 = X_1$ and $Y_2 = X_1 + X_2$. Find the joint p.d.f. of Y_1 and Y_2 , $g(y_1, y_2)$.

=== END OF PAPER=== **TOTAL MARKS: 100**