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Question 1 [12 marks] 

1.1. Define the following terms: 
1.1.1. Power set, P(S) 
1.1.2. Sigma algebra, cr(S) 
1.1.3. Boolean algebra, 5B(S) 

1.2. Consider an experiment of rolling a die with four faces once. 

[2] 
[2] 
[2] 

1.2.1. Find the power set of the sample space S for this experiment, where S represents the 
sample space for a random experiment of rolling a die with six faces. [3] 

1.2.2. Show that the set cr(X) = { ¢, S, {2,3}, {1, 4}} is a sigma algebra. [3] 

Question 2 [27 marks] 

2.1. Let X be a continuous random variable with p.d.f. given by 

!X if O < X < 1 
fx (x) = 2 - x if 1 :s; x < 2 

0 otherwise 
Then find cumulative density function of X 

2.2. The cumulative distribution function (c.d.f.) of a random variable Xis given by 

Fx(x) = - for O :s; x < 4 
4 {

~ for X < 0 

1 for X 2:: 4 
Then use the c.d.f. of X to find 
2.2.1. P(2 < X :s; 3) 
2.2.2. P(X 2:: 1.5) 
2.2.3. the 25th percentile value of X. 

2.3. Consider the following joint p.d.f. of X and Y. 
f(x,y) = 3(x + y)Ico.i)(x + y)Ico.i)(x)Ico.1)CY) 

Find the marginal p.d.f. of Y. 
2.4. Let X and Y be a jointly distributed continuous random variable with joint p.d.f. of 

[; ( ) _ {1.2(x + y 2) for O :s; x :s; land O :s; y :s; 1 
XY X,y - . 

0 otherwise 
2.4.1. Show that marginal pdf of XJx(x) = % ( x +½)I co. 1)(x). 

2.4.2. Find the conditional distribution of Y given X = ¾-
2.4.3. Find P(Y 2:: 0.15IX = 0.25). 

2.4.4. Find the conditional mean Y given X = .!.. 
4 
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[7] 

[2] 
[1] 
[2] 

[4] 

[2] 

[3] 

[3] 

[3] 



Question 3 [24 marks] 

3.1. Let X and Y be two random variables and let a, b, c and k be any constant numbers. Then 
Cov(aX + c, bY + k) = abCov(X, Y). [SJ 

3.2. Let Y1 , Y2 , and Y3 be three random variables with E(Y1 ) = 5, E(Y2 ) = 12, E(Y3 ) = 4, CJf1 = 2, 

CJf
2 

= 3, CJf
3 

= 1, CJy1 y2 = -0.6, CJy1 y3 = 0.3, and CJy2 y3 = 2. If R = 2Y1 - 3Y2 + Y3, then find 

3.2.1. the expected value of R. [2J 
3.2.2. the correlation coefficient between Y1 and Y3 and comment on your result. [3J 
3.2.3. the variance of R. [SJ 

3.3. The joint probability density function of the random variables X, Y, and Z is 

f(x,y,z) = [ixyz2
, 0 < x < l; 0 < y < 1; 0 < z < 3, 

0, elsewhere. 
Find the joint marginal density function of Y and Z. Hint: find fyz(Y, z). [4J 

3.4. If X1 , X2 , and X3 are DISCRETE random variables with joint p.m.f. f (x1 , x2 , x3 ), then for any 

constants c1, c2 and c3, show that E(If=i ciXi) = Lf=i ciE(Xi)- [SJ 

QUESTION 4 [17 marks] 

4.1. Suppose that Xis a random variable having a binomial distribution with the parameters n and p 
(i.e., X ~Bin(n, p)). 

4.1.1. Show that the moment generating function of X is given by Mx(t) = ( l - p(l - et) f. 
Hint: (a+ b)n = rr=oG)akbn-k_ [4J 

4.1.2. Find the cumulant generating function of X and hence find the first cumulant. [SJ 

4.2. Let the random variables Xk~Poisson(l.k) for k = l, ... , n be independent Poisson random 
variables. If we define another random variable Y = X1 + X2 + ·· · + Xn, then find the 
characteristics function of Y, cpy(t). Comment on the distribution of Y based on your result. [Hint 

c/Jxk(t) = eJ.k(eit_1)]. [8J 

QUESTION 5 [20 marks] 

5.1. Suppose that X and Y are independent, continuous random variables with densities fx(x) and 
fy(y). If Z = X + Y, then show that the density function of Z is 

fz(z) = J~
00

fx(z - y)fy(y)dy. [SJ 
5.2. Let X and Y be independent Poisson random variables with parameters il 1 and il 2 . Use the 

convolution formula to show that X + Y is a Poisson random variable with parameter il 1 + il2 . 

[7J 
5.3. Let X1 and X2 have joint p.d.f. f(x 1, x2 ) = ze-Cxi+xz) for 0 < x1 < x2 < l. Let Y1 = X1 and 

Y2 = X1 + X2 • Find the joint p.d.f. of Y1 and Y2 , g(y 11 y2 ). [8J 

=== END OF PAPER=== 
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